Predicción del pH en filetes de caballa salazonada usando imágenes hiperespectrales y quimiometría

Autores/as

DOI:

https://doi.org/10.57063/ricay.v1i1.10

Palabras clave:

calidad del pescado, conservación por salazón, perfiles espectrales, aprendizaje automático

Resumen

El objetivo de este estudio fue predecir el pH de la caballa salazonada, como indicador de calidad, mediante la tecnología de las imágenes hiperespectrales acopladas a técnicas quimiométricas. Se adquirieron 35 caballas frescas en un mercado local de Sullana, Perú, estas fueron lavadas, evisceradas y fileteadas para obtener dos filetes sin piel por cada ejemplar, los mismos se sometieron a un proceso de salazón por inmersión en salmuera al 28% y se almacenaron en refrigeración por 6 días. Las evaluaciones de pH y adquisición de espectros se realizaron con potenciómetro y sistema de imágenes hiperespectrales NIR, respectivamente en los días 0, 1, 2, 3, y 6. Las imágenes fueron corregidas, luego se extrajeron los perfiles de la muestra por umbralizado y estos fueron pretratados con el filtro Savitzky-Golay, seguidamente, se implementó el modelo de regresión de mínimos cuadrados parciales (PLSR) con las longitudes de onda completas y optimizadas. Para validar el modelo se aplicaron 30 repeticiones con validación cruzada (K-fold = 5). El mejor rendimiento se obtuvo con PLSR optimizado con 9 variables laten- tes, logrando un R2 superior a 0.85 y un RMSE de 0.904. Por tanto, es viable el uso de HSI NIR con PLSR para monitoreo del pH en pescado salazonado.

Citas

Aursand, I. G., Gallart-Jornet, L., Erikson, U., Axelson, D. E., & Rustad, T. (2008). Water Distribution in Brine Salted Cod (Gadus morhua) and Salmon (Salmo salar): A Low-Field 1H NMR Study. Journal of Agricultural and Food Chemistry, 56(15), 6252-6260. https://doi.org/10.1021/jf800369n. DOI: https://doi.org/10.1021/jf800369n

Bae, J. H., & Lim, S. Y. (2012). Chemical composition, antiproliferative and antioxidant properties of lipid classes in ordinary and dark muscles from chub mackerel (Scomber japonicus). Food and Chemical Toxicology, 50(3), 823-828. https://doi.org/10.1016/j.fct.2011.12.038. DOI: https://doi.org/10.1016/j.fct.2011.12.038

Choi, J.-W., Lee, M.-K., Choi, J.-H., Jang, M.-K., Ahn, D.-H., & Nam, T.-J. (2018). Development of a Time-temperature Indicator for Managing the Distribution Temperature of Frozen Mackerel Scomber japonicus. Korean Journal of Fisheries and Aquatic Sciences, 51(5), 590-594. https://doi.org/10.5657/KFAS.2018.0590.

Chun, H.-N., Kim, B., & Shin, H.-S. (2014). Evaluation of a freshness indicator for quality of fish products during storage. Food Science and Biotechnology, 23(5), 1719-1725. https://doi.org/10.1007/s10068-014-0235-9. DOI: https://doi.org/10.1007/s10068-014-0235-9

Fernández-Cabanás, V. M., Polvillo, O., Rodríguez-Acuña, R., Botella, B., & Horcada, A. (2011). Rapid determination of the fatty acid profile in pork dry-cured sausages by NIR spectroscopy. Food Chemistry, 124(1), 373-378. https://doi.org/10.1016/j.foodchem.2010.06.031. DOI: https://doi.org/10.1016/j.foodchem.2010.06.031

Goulas, A. E., & Kontominas, M. G. (2005). Effect of salting and smoking-method on the keeping quality of chub mackerel (Scomber japonicus): Biochemical and sensory attributes. Food Chemistry, 93(3), 511-520. https://doi.org/10.1016/j.foodchem.2004.09.040. DOI: https://doi.org/10.1016/j.foodchem.2004.09.040

He, H.-J., Wu, D., & Sun, D.-W. (2014). Rapid and non-destructive determination of drip loss and pH distribution in farmed Atlantic salmon (Salmo salar) fillets using visible and near-infrared (Vis–NIR) hyperspectral imaging. Food Chemistry, 156, 394-401. https://doi.org/10.1016/j.foodchem.2014.01.118. DOI: https://doi.org/10.1016/j.foodchem.2014.01.118

INFOPESCA. (2021). Economía mundial del sector pesquero; enero 2021. https://www.infopesca.org/content/econom%C3%ADa-mundial-del-sector-pesquero-%E2%80%93-enero-2021.

Martínez-Alvarez, O., & Gómez-Guillén, M. C. (2005). The effect of brine composition and pH on the yield and nature of water-soluble proteins extractable from brined muscle of cod (Gadus morhua).

Food Chemistry, 92(1), 71-77. https://doi.org/10.1016/j.foodchem.2004.04.049. DOI: https://doi.org/10.1016/j.foodchem.2004.04.049

Nakazawa, N., Fuchiyama, Y., Shimamori, S., Shibayama, S., Okumura, K., Maeda, T., & Okazaki, E. (2022). Effects of treatment at a subzero temperature on pH, water retention, and metabolites in spotted mackerel (Scomber australasicus) muscle. LWT, 154, 112591. https://doi.org/10.1016/j.lwt.2021.112591. DOI: https://doi.org/10.1016/j.lwt.2021.112591

Negara, B. F. S. P., Lee, M.-J., Tirtawijaya, G., Cho, W.-H., Sohn, J.-H., Kim, J.-S., & Choi, J.-S. (2021).

Application of Deep, Vacuum, and Air Frying Methods to Fry Chub Mackerel (Scomber japonicus).

Processes, 9(7), Art. 7. https://doi.org/10.3390/pr9071225. DOI: https://doi.org/10.3390/pr9071225

Park, J. N., Hwang, K. T., Kim, S. B., & Kim, S. Z. (2009). Partial replacement of NaCl by KCl in salted mackerel (Scomber japonicus) fillet products: Effect on sensory acceptance and lipid oxidation. International Journal of Food Science & Technology, 44(8), 1572-1578. https://doi.org/10.1111/j.1365-2621.2008.01841.x. DOI: https://doi.org/10.1111/j.1365-2621.2008.01841.x

Rahman, M. M., Shibata, M., Nakazawa, N., Rithu, M. N. A., Nakauchi, S., Hagiwara, T., Osako, K., & Okazaki,

E. (2022). Non-destructive Approach for the Prediction of pH in Frozen Fish Meat Using Fluorescence Fingerprints in Tandem with Chemometrics. Fishes, 7(6), Art. 6. https://doi.org/10.3390/fishes7060364. DOI: https://doi.org/10.3390/fishes7060364

Shengnan W., Xinjun C., & Zhu’nan L. (2019). Establishment of forecasting model of the abundance index for chub mackerel (Scomber japonicus) in the northwest Pacific Ocean based on GAM. 海洋学报, 41(8), 36-42. https://doi.org/10.3969/j.issn.0253-4193.2019.08.004.

Watabe, S., Ushio, H., Iwamoto, M., Kamal, M., Ioka, H., & Hashimoto, K. (1989). Rigor-mortis progress of sardine and mackerel in association with ATP degradation and lactate accumulation. NIPPON SUISAN GAKKASHI, 55, 1833-1839. https://doi.org/10.2331/suisan.55.1833. DOI: https://doi.org/10.2331/suisan.55.1833

Wu, L., Pu, H., & Sun, D.-W. (2019). Novel techniques for evaluating freshness quality attributes of fish: A review of recent developments. Trends in Food Science & Technology, 83, 259-273. https://doi.org/10.1016/j.tifs. 2018.12.002. DOI: https://doi.org/10.1016/j.tifs.2018.12.002

Zheng, R., Xu, X., Xing, J., Cheng, H., Zhang, S., Shen, J., & Li, H. (2020). Quality Evaluation and Characteriza- tion of Specific Spoilage Organisms of Spanish Mackerel by High-Throughput Sequencing during 0 °C Cold Chain Logistics. Foods, 9(3), Art. 3. https://doi.org/10.3390/foods9030312. DOI: https://doi.org/10.3390/foods9030312

Zhu, F., Peng, J., Gao, J., Zhao, Y., Yu, K., & He, Y. (2014). Determination and visualization of fat contents in salmon fillets based on visible and near-infrared hyperspectral imagery. Transactions of the Chinese Society of Agricultural Engineering, 30(23), 314-323.

Ziegel, E. R. (2004). A User-Friendly Guide to Multivariate Calibration and Classification. Technometrics, 46(1), 108-110. https://doi.org/10.1198/004017004000000167. DOI: https://doi.org/10.1198/004017004000000167

Descargas

Publicado

2022-11-20

Cómo citar

Arévalo, D., & Castro, W. (2022). Predicción del pH en filetes de caballa salazonada usando imágenes hiperespectrales y quimiometría. Revista De Investigación Científica De La UNF – Aypate, 1(1), 48–54. https://doi.org/10.57063/ricay.v1i1.10

Número

Sección

Artículo Original