Una revisión de la obtención de compuestos bioactivos a partir de subproductos de cítricos procesados: fermentación en estado sólido y métodos de extracción

Autores/as

  • Carlos Juárez Ojeda Universidad Nacional de Frontera, Sullana, Piura, Perú.

Palabras clave:

cítricos, extracción, fermentación, compuestos fenólicos, aceite esencial

Resumen

En los últimos años el interés por la investigación de los subproductos generados por la industria de mandarina, limón y toronja se ha incrementado con la finalidad de agregar valor a estos subproductos, asimismo, estudios que emplean tecnologías emergentes, usando solvente amígales con el ambiente, se ha incrementado con el mismo propósito. En este contexto, la fermentación en estado sólido (SSF) y los métodos de extracción asistida por microondas y por ultrasonido, extracción con agua subcrítica y fluido supercrítico son presentados como alternativas potenciales para ayudar a recuperar compuestos bioactivos presentes en los subproductos de mandarina, limón y toronja. El objetivo de este manuscrito fue describir la composición química de los subproductos de la mandarina, limón y toronja, así mismo fueron descritos los factores que influyen en la SSF cuando se emplean estos subproductos como sustrato. También se describieron las condiciones de los diferentes procesos de extracción para obtener los compuestos bioactivos presentes en los subproductos de mandarina, limón y toronja. La SSF se centra en la recuperación de pectina de la cáscara de limón y los factores como humedad relativa, temperatura, inoculo son los factores determinantes en este proceso.

Citas

Ahmad, J., & Langrish, T. A. G. (2012). Optimisation of total phenolic acids extraction from mandarin peels using microwave energy: The importance of the Maillard reaction. Journal of Food Engineering, 109(1), 162-174. doi: 10.1016/j.jfoodeng.2011.09.017

Al-Juhaimi, F. (2014). CITRUS FRUITS BY-PRODUCTS AS SOURCES OF BIOACTIVE COMPOUNDS WITH ANTIOXIDANT POTENTIAL.

Bagherian, H., Zokaee Ashtiani, F., Fouladitajar, A., & Mohtashamy, M. (2011). Comparisons between conventional, microwave- and ultrasound-assisted methods for extraction of pectin from grapefruit. Chemical Engineering and Processing: Process Intensification, 50(11), 1237-1243. doi: 10.1016/j.cep.2011.08.002.

Berk, Z. (2016). Chapter 10 - By-products of the citrus processing industry. In Z. Berk (Ed.), Citrus Fruit Processing (pp. 219-233). Academic Press. doi: 10.1016/B978-0-12-803133-9.00010-2.

Bier, M. C. J., Medeiros, A. B. P., De Kimpe, N., & Soccol, C. R. (2019). Evaluation of antioxidant activity of the fermented product from the biotransformation of R- (+) - limonene in solid-state fermentation of orange waste by Diaporthe sp. Biotechnology Research and Innovation, 3(1), 168-176. doi: 10.1016/j.biori.2019.01.002.

Biz, A., Finkler, A. T. J., Pitol, L. O., Medina, B. S., Krieger, N., & Mitchell, D. A. (2016). Production of pectinases by solid-state fermentation of a mixture of citrus waste and sugarcane bagasse in a pilot-scale packed-bed bioreactor. Biochemical Engineering Journal, 111, 54-62. doi: 10.1016/j.bej.2016.03.007

Bruna-Maynou, F. J., Castro, R., Rodríguez-Dodero, M. C., G. Barroso, C., & Durán-Guerrero, E. (2020). Flavored Sherry vinegar with citric notes: Characterization and effect of ultrasound in the maceration of orange peels. Food Research International, 133, 109165. doi: 10.1016/j.foodres.2020.109165

Bustamante, J., van Stempvoort, S., García-Gallarreta, M., Houghton, J. A., Briers, H. K., Budarin, V. L., Matharu, A. S., & Clark, J. H. (2016). Microwave assisted hydro-distillation of essential oils from wet citrus peel waste. Journal of Cleaner Production, 137, 598-605.

Colodel, C., Vriesmann, L. C., Teófilo, R. F., & de Oliveira Petkowicz, C. L. (2018). Extraction of pectin from ponkan (Citrus reticulata Blanco cv. Ponkan) peel: Optimization and structural characterization. International Journal of Biological Macromolecules, 117, 385-391. doi: 10.1016/j.ijbiomac.2018.05.048

Cornelio-Santiago, H. P., Gonçalves, C. B., de Oliveira, N. A., & de Oliveira, A. L. (2017). Supercritical CO2 extraction of oil from green coffee beans: Solubility, triacylglycerol composition, thermophysical properties and thermodynamic modelling. The Journal of Supercritical Fluids, 128, 386-394. doi: 10.1016/j.supflu.2017.05.030

Costa, R., Albergamo, A., Arrigo, S., Gentile, F., & Dugo, G. (2019). Solid-phase microextraction-gas chromatography and ultra-high performance liquid chromatography applied to the characterization of lemon wax, a waste product from citrus industry. Journal of Chromatography A, 1603, 262-268. doi: 10.1016/j.chroma.2019.06.049.

Cruz, A. G., Mtz-Enríquez, A. I., Díaz-Jiménez, L., Ramos-González, R., Valdés, J. A. A., Flores, M. E. C., Martínez, J. L. H., & Ilyina, A. (2020). Production of fatty acid methyl esters and bioactive compounds from citrus wax. Waste Management, 102, 48-55. doi: 10.1016/j.wasman.2019.10.021

Cheigh, C.-I., Chung, E.-Y., & Chung, M.-S. (2012). Enhanced extraction of flavanones hesperidin and narirutin from Citrus unshiu peel using subcritical water. Journal of Food Engineering, 110(3), 472-477. doi: 10.1016/j.jfoodeng.2011.12.019.

Chen, Y., Barzee, T. J., Zhang, R., & Pan, Z. (2019). Chapter 9 - Citrus. In Z. Pan, R. Zhang, & S. Zicari (Eds.), Integrated Processing Technologies for Food and Agricultural By-Products (pp. 217-242). Academic Press. doi: 10.1016/B978-0- 12-814138-0.00009-5

Dahmoune, F., Boulekbache, L., Moussi, K., Aoun, O., Spigno, G., & Madani, K. (2013). Valorization of Citrus limon residues for the recovery of antioxidants: Evaluation and optimization of microwave and ultrasound application to solvent extraction. Industrial Crops and Products, 50, 77-87. doi: 10.1016/j.indcrop.2013.07.013

Dar, N. G., Hussain, A., Paracha, G. M., & Akhter, S. (2015). Evaluation of different techniques for extraction of antioxidants as bioactive compounds from citrus peels (industrial by products). American-Eurasian Journal of Agriculture and Environmental Science, 15(4), 676-682.

Duba, K. S., & Fiori, L. (2015). Extraction of bioactives from food processing residues using techniques performed at high pressures. Current Opinion in Food Science, 5, 14-22. doi: 10.1016/j.cofs.2015.06.009

El Kantar, S., Rajha, H. N., Boussetta, N., Vorobiev, E., Maroun, R. G., & Louka, N. (2019). Green extraction of polyphenols from grapefruit peels using high voltage electrical discharges, deep eutectic solvents and aqueous glycerol. Food Chemistry, 295, 165-171. doi: 10.1016/j.foodchem.2019.05.111

Eryildiz, B., Lukitawesa, & Taherzadeh, M. J. (2020). Effect of pH, substrate loading, oxygen, and methanogens inhibitors on volatile fatty acid (VFA) production from citrus waste by anaerobic digestion. Bioresource Technology, 302, 122800. doi: 10.1016/j.biortech.2020.122800

Espinosa-Pardo, F. A., Nakajima, V. M., Macedo, G. A., Macedo, J. A., & Martínez, J. (2017). Extraction of phenolic compounds from dry and fermented orange pomace using supercritical CO2 and cosolvents. Food and Bioproducts Processing, 101, 1-10. doi: 10.1016/j.fbp.2016.10.002

FAO. (2015). Organización de las Naciones Unidas para la Alimentación y la Agricultura. Mercados principales de cítricos y jugos de cítricos orgánicos.

FAO. (2016). Citrus Fruit - Fresh and Processed Statistical Bulletin

Fernández, M. d. l. Á., Espino, M., Gomez, F. J. V., & Silva, M. F. (2018). Novel approaches mediated by tailor-made green solvents for the extraction of phenolic compounds from agro-food industrial by-products. Food Chemistry, 239, 671-678. doi: 10.1016/j.foodchem.2017.06.150

Franco-Arnedo, G., Buelvas-Puello, L. M., Miranda-Lasprilla, D., Martínez-Correa, H. A., & Parada-Alfonso, F. (2020). Obtaining antioxidant extracts from tangerine (C. reticulata var. Arrayana) peels by modified supercritical CO2 and their use as protective agent against the lipid oxidation of a mayonnaise. The Journal of Supercritical Fluids, 165, 104957. doi: 10.1016/j.supflu.2020.104957

Gan, J., Huang, Z., Yu, Q., Peng, G., Chen, Y., Xie, J., Nie, S., & Xie, M. (2020). Microwave assisted extraction with three modifications on structural and functional properties of soluble dietary fibers from grapefruit peel. Food Hydrocolloids, 101, 105549. doi: 10.1016/j.foodhyd.2019.105549

Gómez-Mejía, E., Rosales-Conrado, N., León-González, M. E., & Madrid, Y. (2019). Citrus peels waste as a source of value-added compounds: Extraction and quantification of bioactive polyphenols. Food Chemistry, 295, 289-299. doi: 10.1016/j.foodchem.2019.05.136

Gorinstein, S., Martın -Belloso, O., Park, Y.-S., Haruenkit, R., Lojek, A., Ĉıž , M., Caspi, A., Libman, I., & Trakhtenberg, S. (2001). Comparison of some biochemical characteristics of different citrus fruits. Food Chemistry, 74(3), 309-315.

Hayat, K., Zhang, X., Chen, H., Xia, S., Jia, C., & Zhong, F. (2010). Liberation and separation of phenolic compounds from citrus mandarin peels by microwave heating and its effect on antioxidant activity. Separation and Purification Technology, 73(3), 371-376. doi: 10.1016/j.seppur.2010.04.026

Hosseini, S. S., Khodaiyan, F., Kazemi, M., & Najari, Z. (2019). Optimization and characterization of pectin extracted from sour orange peel by ultrasound assisted method. International Journal of Biological Macromolecules, 125, 621-629. doi: 1016/j.ijbiomac.2018.12.096

Jagannath, A., & Biradar, R. (2019). Comparative Evaluation of Soxhlet and Ultrasonics on the Structural Morphology and Extraction of Bioactive Compounds of Lemon (Citrus limon L.) Peel. J Food Chem Nanotechnol, 5(3), 56-64.

Khandare, R. D., Tomke, P. D., & Rathod, V. K. (2020). Kinetic modeling and process intensification of ultrasound-assisted extraction of d-limonene using citrus industry waste. Chemical Engineering and Processing - Process Intensification, 108181. doi: 10.1016/j.cep.2020.108181

Ko, M.-J., Kwon, H.-L., & Chung, M.-S. (2016). Pilot-scale subcritical water extraction of flavonoids from satsuma mandarin (Citrus unshiu Markovich) peel. Innovative Food Science & Emerging Technologies, 38, 175-181. doi: 10.1016/j.ifset.2016.10.008

Kundu, D., Das, M., Mahle, R., Biswas, P., Karmakar, S., & Banerjee, R. (2020). Chapter 7 - Citrus fruits. In C. M. Galanakis (Ed.), Valorization of Fruit Processing By-products (pp. 145-166). Academic Press. doi: 10.1016/B978-0-12-817106-6.00007-1

Lachos-Perez, D., Baseggio, A. M., Mayanga-Torres, P. C., Maróstica, M. R., Rostagno, M. A., Martínez, J., & Forster-Carneiro, T. (2018). Subcritical water extraction of flavanones from defatted orange peel. The Journal of Supercritical Fluids, 138, 7-16. doi: 10.1016/j.supflu.2018.03.015

Lachos-Perez, D., Baseggio, A. M., Torres-Mayanga, P. C., Ávila, P. F., Tompsett, G. A., Marostica, M., Goldbeck, R., Timko, M. T., Rostagno, M., Martinez, J., & Forster-Carneiro, T. (2020). Sequential subcritical water process applied to orange peel for the recovery flavanones and sugars. The Journal of Supercritical Fluids, 160, 104789. doi: 10.1016/j.supflu.2020.104789

Larios-Cruz, R., Rodríguez-Jasso, R. M., Ruiz, H. A., Prado-Barragán, A., Wong-Paz, J. E., Rodríguez-Herrera, R., Montañez, J. C., & Aguilar, C. N. (2018). Utilization of Citrus Waste Biomass for Antioxidant Production by Solid-State Fermentation. In Waste to Wealth (pp. 83-96). Springer.

Londoño-Londoño, J., Lima, V. R. d., Lara, O., Gil, A., Pasa, T. B. C., Arango, G. J., & Pineda, J. R. R. (2010). Clean recovery of antioxidant flavonoids from citrus peel: Optimizing an aqueous ultrasound-assisted extraction method. Food Chemistry, 119(1), 81-87. doi: 10.1016/j.foodchem.2009.05.075

López-Gómez, J. P., Manan, M. A., & Webb, C. (2020). Chapter 7 - Solid-state fermentation of food industry wastes. In M. R. Kosseva & C. Webb (Eds.), Food Industry Wastes (Second Edition) (pp. 135-161). Academic Press. doi: 10.1016/B978-0-12-817121-9.00007-3

Ma, Y.-Q., Chen, J.-C., Liu, D.-H., & Ye, X.-Q. (2009). Simultaneous extraction of phenolic compounds of citrus peel extracts: Effect of ultrasound. Ultrasonics Sonochemistry, 16(1), 57-62. doi: 10.1016/j.ultsonch.2008.04.012

Madeira, J. V., Nakajima, V. M., Macedo, J. A., & Macedo, G. A. (2014). Rich bioactive phenolic extract production by microbial biotransformation of Brazilian Citrus residues. Chemical Engineering Research and Design, 92(10), 1802-1810. doi: 10.1016/j.cherd.2014.07.014

Mahato, N., Sinha, M., Sharma, K., Koteswararao, R., & Cho, M. H. (2019). Modern Extraction and Purification Techniques for Obtaining High Purity Food-Grade Bioactive Compounds and Value-Added Co-Products from Citrus Wastes. Foods, 8(11), 523.

Mantzouridou, F. T., Paraskevopoulou, A., & Lalou, S. (2015). Yeast flavour production by solid state fermentation of orange peel waste. Biochemical Engineering Journal, 101, 1-8. doi: 10.1016/j.bej.2015.04.013

Marín, F. R., Soler-Rivas, C., Benavente-García, O., Castillo, J., & Pérez-Alvarez, J. A. (2007). By-products from different citrus processes as a source of customized functional fibres. Food Chemistry, 100(2), 736-741. doi: 10.1016/j.foodchem.2005.04.040

MINAGRI, (2017). Ministerio de Agricultura. Citricos. Lima, Perú Montoya, C., González, L., Pulido, S., Atehortúa, L., & Robledo, S. M. (2019). Identification and quantification of limonoid aglycones content of Citrus seeds. Revista Brasileira de Farmacognosia, 29(6), 710-714. doi: 10.1016/j.bjp.2019.07.006

Nakajima, V. M., Madeira, J. V., Macedo, G. A., & Macedo, J. A. (2016). Biotransformation effects on anti lipogenic activity of citrus extracts. Food Chemistry, 197, 1046-1053. doi: 10.1016/j.foodchem.2015.11.109

Ndayishimiye, J., & Chun, B. S. (2017). Optimization of carotenoids and antioxidant activity of oils obtained from a co-extraction of citrus (Yuzu ichandrin) byproducts using supercritical carbon dioxide. Biomass and Bioenergy, 106, 1-7. doi: 10.1016/j.biombioe.2017.08.014

Ndayishimiye, J., Lim, D. J., & Chun, B. S. (2018). Antioxidant and antimicrobial activity of oils obtained from a mixture of citrus by-products using a modified supercritical carbon dioxide. Journal of Industrial and Engineering Chemistry, 57, 339-348. doi: 10.1016/j.jiec.2017.08.041

Ordóñez-Santos, L. E., Esparza-Estrada, J., & Vanegas-Mahecha, P. (2020). Ultrasound-assisted extraction of total carotenoids from mandarin epicarp and application as natural colorant in bakery products. LWT, 110598. doi: 10.1016/j.lwt.2020.110598

Peterson, J., Dwyer, J., Adlercreutz, H., Scalbert, A., Jacques, P., & McCullough, M. L. (2010). Dietary lignans: physiology and potential for cardiovascular disease risk reduction. Nutrition Reviews, 68(10), 571-603. doi: 10.1111/j.1753- 4887.2010.00319.x

Rahmani, Z., Khodaiyan, F., Kazemi, M., & Sharifan, A. (2020). Optimization of microwave-assisted extraction and structural characterization of pectin from sweet lemon peel. International Journal of Biological Macromolecules, 147, 1107-1115. doi: 10.1016/j.ijbiomac.2019.10.079

Ramful, D., Bahorun, T., Bourdon, E., Tarnus, E., & Aruoma, O. I. (2010). Bioactive phenolics and antioxidant propensity of flavedo extracts of Mauritian citrus fruits: Potential prophylactic ingredients for functional foods application. Toxicology, 278(1), 75-87. doi: 10.1016/j.tox.2010.01.012

Reynoso-Camacho, R., Rodríguez-Villanueva, L. D., Sotelo-González, A. M., Ramos-Gómez, M., & Pérez-Ramírez, I. F. (2021). Citrus decoction by-product represents a rich source of carotenoid, phytosterol, extractable and nonextractable polyphenols. Food Chemistry, 350, 129239. doi: 10.1016/j.foodchem.2021.129239

Rosales, E., Pazos, M., & Ángeles Sanromán, M. (2018). Chapter 15 - Solid-State Fermentation for Food Applications. In A. Pandey, C. Larroche, & C. R. Soccol (Eds.), Current Developments in Biotechnology and Bioengineering (pp. 319-355). Elsevier. doi: 10.1016/B978-0-444-63990-5.00015-3

Rossi, R. C., da Rosa, S. R., Weimer, P., Lisbôa Moura, J. G., de Oliveira, V. R., & de Castilhos, J. (2020). Assessment of compounds and cytotoxicity of Citrus deliciosa Tenore essential oils: From an underexploited by-product to a rich source of high-value bioactive compounds. Food Bioscience, 38, 100779. doi: 10.1016/j.fbio.2020.100779

Routray, W., & Orsat, V. (2019). 15 - Agricultural and Food Industry By-Products: Source of Bioactive Components for Functional Beverages. In A. M. Grumezescu & A. M. Holban (Eds.), Nutrients in Beverages (pp. 543-589). Academic Press. doi: 10.1016/B978-0-12-816842-4.00015-0

Ruiz, H. A., Rodríguez-Jasso, R. M., Rodríguez, R., Contreras-Esquivel, J. C., & Aguilar, C. N. (2012). Pectinase production from lemon peel pomace as support and carbon source in solid-state fermentation column-tray bioreactor. Biochemical Engineering Journal, 65, 90-95. doi: 10.1016/j.bej.2012.03.007

Sadh, P. K., Kumar, S., Chawla, P., & Duhan, J. S. (2018). Fermentation: a boon for production of bioactive compounds by processing of food industries wastes (byproducts). Molecules, 23(10), 2560.

Safdar, M. N., Kausar, T., Jabbar, S., Mumtaz, A., Ahad, K., & Saddozai, A. A. (2017). Extraction and quantification of polyphenols from kinnow (Citrus reticulate L.) peel using ultrasound and maceration techniques. Journal of food and drug analysis, 25(3), 488-500.

Shan, Y. (2016). Chapter 3 - Extraction Processes of Functional Components From Citrus Peel. In Y. Shan (Ed.), Comprehensive Utilization of Citrus By-Products (pp. 31-58). Academic Press. doi: 10.1016/B978-0-12-809785-4.00003-4

Smeriglio, A., Cornara, L., Denaro, M., Barreca, D., Burlando, B., Xiao, J., & Trombetta, D. (2019). Antioxidant and cytoprotective activities of an ancient Mediterranean citrus (Citrus lumia Risso) albedo extract: Microscopic observations and polyphenol characterization. Food Chemistry, 279, 347-355. doi: 10.1016/j.foodchem.2018.11.138

Soccol, C. R., Costa, E. S. F. d., Letti, L. A. J., Karp, S. G., Woiciechowski, A. L., & Vandenberghe, L. P. d. S. (2017). Recent developments and innovations in solid state fermentation. Biotechnology Research and Innovation, 1(1), 52-71. doi: 10.1016/j.biori.2017.01.002

Su, D.-L., Li, P.-J., Quek, S. Y., Huang, Z.-Q., Yuan, Y.-J., Li, G.-Y., & Shan, Y. (2019). Efficient extraction and characterization of pectin from orange peel by a combined surfactant and microwave assisted process. Food Chemistry, 286, 1-7. doi: 10.1016/j.foodchem.2019.01.200

Sun, Y., Liu, D., Chen, J., Ye, X., & Yu, D. (2011). Effects of different factors of ultrasound treatment on the extraction yield of the all-trans-β-carotene from citrus peels. Ultrasonics Sonochemistry, 18(1), 243-249. doi: 10.1016/j.ultsonch.2010.05.014

Tian, X., Liu, Y., Feng, X., Khaskheli, A. A., Xiang, Y., & Huang, W. (2018). The effects of alcohol fermentation on the extraction of antioxidant compounds and flavonoids of pomelo peel. LWT, 89, 763-769. doi: 10.1016/j.lwt.2017.11.049

Tsitsagi, M., Ebralidze, K., Chkhaidze, M., Rubashvili, I., & Tsitsishvili, V. (2018). Sequential extraction of bioactive compounds from tangerine (Citrus Unshiu) peel. Annals of Agrarian Science, 16(2), 236-241. doi: 10.1016/j.aasci.2018.02.007

Wang, W., Ma, X., Xu, Y., Cao, Y., Jiang, Z., Ding, T., Ye, X., & Liu, D. (2015). Ultrasound-assisted heating extraction of pectin from grapefruit peel: Optimization and comparison with the conventional method. Food Chemistry, 178, 106-114. doi: 10.1016/j.foodchem.2015.01.080

Xiong, K., & Chen, Y. (2020). Supercritical carbon dioxide extraction of essential oil from tangerine peel: Experimental optimization and kinetics modelling. Chemical Engineering Research and Design, 164, 412-423. doi: 10.1016/j.cherd.2020.09.032

Yaqoob, M., Aggarwal, P., Aslam, R., & Rehal, J. (2020). Chapter 15 - Extraction of bioactives from citrus. In Inamuddin, A. M. Asiri, & A. M. Isloor (Eds.), Green Sustainable Process for Chemical and Environmental Engineering and Science (pp. 357-377). Elsevier. doi: 10.1016/B978-0-12-817388-6.00015-5

Descargas

Publicado

2024-06-13

Cómo citar

Juárez Ojeda, C. (2024). Una revisión de la obtención de compuestos bioactivos a partir de subproductos de cítricos procesados: fermentación en estado sólido y métodos de extracción. Revista De Investigación Científica De La UNF – Aypate, 2(3), 77–95. Recuperado a partir de https://aypate.revista.unf.edu.pe/index.php/aypate/article/view/56

Número

Sección

Artículo Original