Una revisión de la obtención de compuestos bioactivos a partir de subproductos de cítricos procesados: fermentación en estado sólido y métodos de extracción
DOI:
https://doi.org/10.57063/ricay.v2i3.56Keywords:
citrus fruits, extraction, fermentation, phenolic compounds, essential oilAbstract
In recent years, interest in research on the by-products generated by the mandarin, lemon and grapefruit industry has increased in order to add value to these by-products, as well as studies that use emerging technologies, using environmentally friendly solvents, has been increased for the same purpose. In this context, the solid-state fermentation (SSF) and the microwave and ultrasound assisted extraction, subcritical water extraction and supercritical fluid extraction methods are presented as potential alternatives to help recover bioactive compounds present in mandarin, lemon and grapefruit by-products. The objective of this manuscript was to describe the chemical composition of mandarin, lemon and grapefruit by-products, as well as the factors that influence SSF when using these by-products as substrate. The conditions of the different extraction processes to obtain the bioactive compounds present in mandarin, lemon and grapefruit by-products were also described. The SSF focuses on the recovery of pectin from lemon peel and factors such as relative humidity, temperature and inoculum are the determining factors in this process.
References
Ahmad, J., & Langrish, T. A. G. (2012). Optimisation of total phenolic acids extraction from mandarin peels using microwave energy: The importance of the Maillard reaction. Journal of Food Engineering, 109(1), 162-174. doi: 10.1016/j.jfoodeng.2011.09.017 DOI: https://doi.org/10.1016/j.jfoodeng.2011.09.017
Al-Juhaimi, F. (2014). CITRUS FRUITS BY-PRODUCTS AS SOURCES OF BIOACTIVE COMPOUNDS WITH ANTIOXIDANT POTENTIAL.
Bagherian, H., Zokaee Ashtiani, F., Fouladitajar, A., & Mohtashamy, M. (2011). Comparisons between conventional, microwave- and ultrasound-assisted methods for extraction of pectin from grapefruit. Chemical Engineering and Processing: Process Intensification, 50(11), 1237-1243. doi: 10.1016/j.cep.2011.08.002. DOI: https://doi.org/10.1016/j.cep.2011.08.002
Berk, Z. (2016). Chapter 10 - By-products of the citrus processing industry. In Z. Berk (Ed.), Citrus Fruit Processing (pp. 219-233). Academic Press. doi: 10.1016/B978-0-12-803133-9.00010-2. DOI: https://doi.org/10.1016/B978-0-12-803133-9.00010-2
Bier, M. C. J., Medeiros, A. B. P., De Kimpe, N., & Soccol, C. R. (2019). Evaluation of antioxidant activity of the fermented product from the biotransformation of R- (+) - limonene in solid-state fermentation of orange waste by Diaporthe sp. Biotechnology Research and Innovation, 3(1), 168-176. doi: 10.1016/j.biori.2019.01.002. DOI: https://doi.org/10.1016/j.biori.2019.01.002
Biz, A., Finkler, A. T. J., Pitol, L. O., Medina, B. S., Krieger, N., & Mitchell, D. A. (2016). Production of pectinases by solid-state fermentation of a mixture of citrus waste and sugarcane bagasse in a pilot-scale packed-bed bioreactor. Biochemical Engineering Journal, 111, 54-62. doi: 10.1016/j.bej.2016.03.007 DOI: https://doi.org/10.1016/j.bej.2016.03.007
Bruna-Maynou, F. J., Castro, R., Rodríguez-Dodero, M. C., G. Barroso, C., & Durán-Guerrero, E. (2020). Flavored Sherry vinegar with citric notes: Characterization and effect of ultrasound in the maceration of orange peels. Food Research International, 133, 109165. doi: 10.1016/j.foodres.2020.109165 DOI: https://doi.org/10.1016/j.foodres.2020.109165
Bustamante, J., van Stempvoort, S., García-Gallarreta, M., Houghton, J. A., Briers, H. K., Budarin, V. L., Matharu, A. S., & Clark, J. H. (2016). Microwave assisted hydro-distillation of essential oils from wet citrus peel waste. Journal of Cleaner Production, 137, 598-605. DOI: https://doi.org/10.1016/j.jclepro.2016.07.108
Colodel, C., Vriesmann, L. C., Teófilo, R. F., & de Oliveira Petkowicz, C. L. (2018). Extraction of pectin from ponkan (Citrus reticulata Blanco cv. Ponkan) peel: Optimization and structural characterization. International Journal of Biological Macromolecules, 117, 385-391. doi: 10.1016/j.ijbiomac.2018.05.048 DOI: https://doi.org/10.1016/j.ijbiomac.2018.05.048
Cornelio-Santiago, H. P., Gonçalves, C. B., de Oliveira, N. A., & de Oliveira, A. L. (2017). Supercritical CO2 extraction of oil from green coffee beans: Solubility, triacylglycerol composition, thermophysical properties and thermodynamic modelling. The Journal of Supercritical Fluids, 128, 386-394. doi: 10.1016/j.supflu.2017.05.030 DOI: https://doi.org/10.1016/j.supflu.2017.05.030
Costa, R., Albergamo, A., Arrigo, S., Gentile, F., & Dugo, G. (2019). Solid-phase microextraction-gas chromatography and ultra-high performance liquid chromatography applied to the characterization of lemon wax, a waste product from citrus industry. Journal of Chromatography A, 1603, 262-268. doi: 10.1016/j.chroma.2019.06.049. DOI: https://doi.org/10.1016/j.chroma.2019.06.049
Cruz, A. G., Mtz-Enríquez, A. I., Díaz-Jiménez, L., Ramos-González, R., Valdés, J. A. A., Flores, M. E. C., Martínez, J. L. H., & Ilyina, A. (2020). Production of fatty acid methyl esters and bioactive compounds from citrus wax. Waste Management, 102, 48-55. doi: 10.1016/j.wasman.2019.10.021 DOI: https://doi.org/10.1016/j.wasman.2019.10.021
Cheigh, C.-I., Chung, E.-Y., & Chung, M.-S. (2012). Enhanced extraction of flavanones hesperidin and narirutin from Citrus unshiu peel using subcritical water. Journal of Food Engineering, 110(3), 472-477. doi: 10.1016/j.jfoodeng.2011.12.019. DOI: https://doi.org/10.1016/j.jfoodeng.2011.12.019
Chen, Y., Barzee, T. J., Zhang, R., & Pan, Z. (2019). Chapter 9 - Citrus. In Z. Pan, R. Zhang, & S. Zicari (Eds.), Integrated Processing Technologies for Food and Agricultural By-Products (pp. 217-242). Academic Press. doi: 10.1016/B978-0- 12-814138-0.00009-5 DOI: https://doi.org/10.1016/B978-0-12-814138-0.00009-5
Dahmoune, F., Boulekbache, L., Moussi, K., Aoun, O., Spigno, G., & Madani, K. (2013). Valorization of Citrus limon residues for the recovery of antioxidants: Evaluation and optimization of microwave and ultrasound application to solvent extraction. Industrial Crops and Products, 50, 77-87. doi: 10.1016/j.indcrop.2013.07.013 DOI: https://doi.org/10.1016/j.indcrop.2013.07.013
Dar, N. G., Hussain, A., Paracha, G. M., & Akhter, S. (2015). Evaluation of different techniques for extraction of antioxidants as bioactive compounds from citrus peels (industrial by products). American-Eurasian Journal of Agriculture and Environmental Science, 15(4), 676-682.
Duba, K. S., & Fiori, L. (2015). Extraction of bioactives from food processing residues using techniques performed at high pressures. Current Opinion in Food Science, 5, 14-22. doi: 10.1016/j.cofs.2015.06.009 DOI: https://doi.org/10.1016/j.cofs.2015.06.009
El Kantar, S., Rajha, H. N., Boussetta, N., Vorobiev, E., Maroun, R. G., & Louka, N. (2019). Green extraction of polyphenols from grapefruit peels using high voltage electrical discharges, deep eutectic solvents and aqueous glycerol. Food Chemistry, 295, 165-171. doi: 10.1016/j.foodchem.2019.05.111 DOI: https://doi.org/10.1016/j.foodchem.2019.05.111
Eryildiz, B., Lukitawesa, & Taherzadeh, M. J. (2020). Effect of pH, substrate loading, oxygen, and methanogens inhibitors on volatile fatty acid (VFA) production from citrus waste by anaerobic digestion. Bioresource Technology, 302, 122800. doi: 10.1016/j.biortech.2020.122800 DOI: https://doi.org/10.1016/j.biortech.2020.122800
Espinosa-Pardo, F. A., Nakajima, V. M., Macedo, G. A., Macedo, J. A., & Martínez, J. (2017). Extraction of phenolic compounds from dry and fermented orange pomace using supercritical CO2 and cosolvents. Food and Bioproducts Processing, 101, 1-10. doi: 10.1016/j.fbp.2016.10.002 DOI: https://doi.org/10.1016/j.fbp.2016.10.002
FAO. (2015). Organización de las Naciones Unidas para la Alimentación y la Agricultura. Mercados principales de cítricos y jugos de cítricos orgánicos.
FAO. (2016). Citrus Fruit - Fresh and Processed Statistical Bulletin
Fernández, M. d. l. Á., Espino, M., Gomez, F. J. V., & Silva, M. F. (2018). Novel approaches mediated by tailor-made green solvents for the extraction of phenolic compounds from agro-food industrial by-products. Food Chemistry, 239, 671-678. doi: 10.1016/j.foodchem.2017.06.150 DOI: https://doi.org/10.1016/j.foodchem.2017.06.150
Franco-Arnedo, G., Buelvas-Puello, L. M., Miranda-Lasprilla, D., Martínez-Correa, H. A., & Parada-Alfonso, F. (2020). Obtaining antioxidant extracts from tangerine (C. reticulata var. Arrayana) peels by modified supercritical CO2 and their use as protective agent against the lipid oxidation of a mayonnaise. The Journal of Supercritical Fluids, 165, 104957. doi: 10.1016/j.supflu.2020.104957 DOI: https://doi.org/10.1016/j.supflu.2020.104957
Gan, J., Huang, Z., Yu, Q., Peng, G., Chen, Y., Xie, J., Nie, S., & Xie, M. (2020). Microwave assisted extraction with three modifications on structural and functional properties of soluble dietary fibers from grapefruit peel. Food Hydrocolloids, 101, 105549. doi: 10.1016/j.foodhyd.2019.105549 DOI: https://doi.org/10.1016/j.foodhyd.2019.105549
Gómez-Mejía, E., Rosales-Conrado, N., León-González, M. E., & Madrid, Y. (2019). Citrus peels waste as a source of value-added compounds: Extraction and quantification of bioactive polyphenols. Food Chemistry, 295, 289-299. doi: 10.1016/j.foodchem.2019.05.136 DOI: https://doi.org/10.1016/j.foodchem.2019.05.136
Gorinstein, S., Martın -Belloso, O., Park, Y.-S., Haruenkit, R., Lojek, A., Ĉıž , M., Caspi, A., Libman, I., & Trakhtenberg, S. (2001). Comparison of some biochemical characteristics of different citrus fruits. Food Chemistry, 74(3), 309-315. DOI: https://doi.org/10.1016/S0308-8146(01)00157-1
Hayat, K., Zhang, X., Chen, H., Xia, S., Jia, C., & Zhong, F. (2010). Liberation and separation of phenolic compounds from citrus mandarin peels by microwave heating and its effect on antioxidant activity. Separation and Purification Technology, 73(3), 371-376. doi: 10.1016/j.seppur.2010.04.026 DOI: https://doi.org/10.1016/j.seppur.2010.04.026
Hosseini, S. S., Khodaiyan, F., Kazemi, M., & Najari, Z. (2019). Optimization and characterization of pectin extracted from sour orange peel by ultrasound assisted method. International Journal of Biological Macromolecules, 125, 621-629. doi: 1016/j.ijbiomac.2018.12.096 DOI: https://doi.org/10.1016/j.ijbiomac.2018.12.096
Jagannath, A., & Biradar, R. (2019). Comparative Evaluation of Soxhlet and Ultrasonics on the Structural Morphology and Extraction of Bioactive Compounds of Lemon (Citrus limon L.) Peel. J Food Chem Nanotechnol, 5(3), 56-64. DOI: https://doi.org/10.17756/jfcn.2019-072
Khandare, R. D., Tomke, P. D., & Rathod, V. K. (2020). Kinetic modeling and process intensification of ultrasound-assisted extraction of d-limonene using citrus industry waste. Chemical Engineering and Processing - Process Intensification, 108181. doi: 10.1016/j.cep.2020.108181 DOI: https://doi.org/10.1016/j.cep.2020.108181
Ko, M.-J., Kwon, H.-L., & Chung, M.-S. (2016). Pilot-scale subcritical water extraction of flavonoids from satsuma mandarin (Citrus unshiu Markovich) peel. Innovative Food Science & Emerging Technologies, 38, 175-181. doi: 10.1016/j.ifset.2016.10.008 DOI: https://doi.org/10.1016/j.ifset.2016.10.008
Kundu, D., Das, M., Mahle, R., Biswas, P., Karmakar, S., & Banerjee, R. (2020). Chapter 7 - Citrus fruits. In C. M. Galanakis (Ed.), Valorization of Fruit Processing By-products (pp. 145-166). Academic Press. doi: 10.1016/B978-0-12-817106-6.00007-1 DOI: https://doi.org/10.1016/B978-0-12-817106-6.00007-1
Lachos-Perez, D., Baseggio, A. M., Mayanga-Torres, P. C., Maróstica, M. R., Rostagno, M. A., Martínez, J., & Forster-Carneiro, T. (2018). Subcritical water extraction of flavanones from defatted orange peel. The Journal of Supercritical Fluids, 138, 7-16. doi: 10.1016/j.supflu.2018.03.015 DOI: https://doi.org/10.1016/j.supflu.2018.03.015
Lachos-Perez, D., Baseggio, A. M., Torres-Mayanga, P. C., Ávila, P. F., Tompsett, G. A., Marostica, M., Goldbeck, R., Timko, M. T., Rostagno, M., Martinez, J., & Forster-Carneiro, T. (2020). Sequential subcritical water process applied to orange peel for the recovery flavanones and sugars. The Journal of Supercritical Fluids, 160, 104789. doi: 10.1016/j.supflu.2020.104789 DOI: https://doi.org/10.1016/j.supflu.2020.104789
Larios-Cruz, R., Rodríguez-Jasso, R. M., Ruiz, H. A., Prado-Barragán, A., Wong-Paz, J. E., Rodríguez-Herrera, R., Montañez, J. C., & Aguilar, C. N. (2018). Utilization of Citrus Waste Biomass for Antioxidant Production by Solid-State Fermentation. In Waste to Wealth (pp. 83-96). Springer. DOI: https://doi.org/10.1007/978-981-10-7431-8_5
Londoño-Londoño, J., Lima, V. R. d., Lara, O., Gil, A., Pasa, T. B. C., Arango, G. J., & Pineda, J. R. R. (2010). Clean recovery of antioxidant flavonoids from citrus peel: Optimizing an aqueous ultrasound-assisted extraction method. Food Chemistry, 119(1), 81-87. doi: 10.1016/j.foodchem.2009.05.075 DOI: https://doi.org/10.1016/j.foodchem.2009.05.075
López-Gómez, J. P., Manan, M. A., & Webb, C. (2020). Chapter 7 - Solid-state fermentation of food industry wastes. In M. R. Kosseva & C. Webb (Eds.), Food Industry Wastes (Second Edition) (pp. 135-161). Academic Press. doi: 10.1016/B978-0-12-817121-9.00007-3 DOI: https://doi.org/10.1016/B978-0-12-817121-9.00007-3
Ma, Y.-Q., Chen, J.-C., Liu, D.-H., & Ye, X.-Q. (2009). Simultaneous extraction of phenolic compounds of citrus peel extracts: Effect of ultrasound. Ultrasonics Sonochemistry, 16(1), 57-62. doi: 10.1016/j.ultsonch.2008.04.012 DOI: https://doi.org/10.1016/j.ultsonch.2008.04.012
Madeira, J. V., Nakajima, V. M., Macedo, J. A., & Macedo, G. A. (2014). Rich bioactive phenolic extract production by microbial biotransformation of Brazilian Citrus residues. Chemical Engineering Research and Design, 92(10), 1802-1810. doi: 10.1016/j.cherd.2014.07.014 DOI: https://doi.org/10.1016/j.cherd.2014.07.014
Mahato, N., Sinha, M., Sharma, K., Koteswararao, R., & Cho, M. H. (2019). Modern Extraction and Purification Techniques for Obtaining High Purity Food-Grade Bioactive Compounds and Value-Added Co-Products from Citrus Wastes. Foods, 8(11), 523. DOI: https://doi.org/10.3390/foods8110523
Mantzouridou, F. T., Paraskevopoulou, A., & Lalou, S. (2015). Yeast flavour production by solid state fermentation of orange peel waste. Biochemical Engineering Journal, 101, 1-8. doi: 10.1016/j.bej.2015.04.013 DOI: https://doi.org/10.1016/j.bej.2015.04.013
Marín, F. R., Soler-Rivas, C., Benavente-García, O., Castillo, J., & Pérez-Alvarez, J. A. (2007). By-products from different citrus processes as a source of customized functional fibres. Food Chemistry, 100(2), 736-741. doi: 10.1016/j.foodchem.2005.04.040 DOI: https://doi.org/10.1016/j.foodchem.2005.04.040
MINAGRI, (2017). Ministerio de Agricultura. Citricos. Lima, Perú Montoya, C., González, L., Pulido, S., Atehortúa, L., & Robledo, S. M. (2019). Identification and quantification of limonoid aglycones content of Citrus seeds. Revista Brasileira de Farmacognosia, 29(6), 710-714. doi: 10.1016/j.bjp.2019.07.006 DOI: https://doi.org/10.1016/j.bjp.2019.07.006
Nakajima, V. M., Madeira, J. V., Macedo, G. A., & Macedo, J. A. (2016). Biotransformation effects on anti lipogenic activity of citrus extracts. Food Chemistry, 197, 1046-1053. doi: 10.1016/j.foodchem.2015.11.109 DOI: https://doi.org/10.1016/j.foodchem.2015.11.109
Ndayishimiye, J., & Chun, B. S. (2017). Optimization of carotenoids and antioxidant activity of oils obtained from a co-extraction of citrus (Yuzu ichandrin) byproducts using supercritical carbon dioxide. Biomass and Bioenergy, 106, 1-7. doi: 10.1016/j.biombioe.2017.08.014 DOI: https://doi.org/10.1016/j.biombioe.2017.08.014
Ndayishimiye, J., Lim, D. J., & Chun, B. S. (2018). Antioxidant and antimicrobial activity of oils obtained from a mixture of citrus by-products using a modified supercritical carbon dioxide. Journal of Industrial and Engineering Chemistry, 57, 339-348. doi: 10.1016/j.jiec.2017.08.041 DOI: https://doi.org/10.1016/j.jiec.2017.08.041
Ordóñez-Santos, L. E., Esparza-Estrada, J., & Vanegas-Mahecha, P. (2020). Ultrasound-assisted extraction of total carotenoids from mandarin epicarp and application as natural colorant in bakery products. LWT, 110598. doi: 10.1016/j.lwt.2020.110598 DOI: https://doi.org/10.1016/j.lwt.2020.110598
Peterson, J., Dwyer, J., Adlercreutz, H., Scalbert, A., Jacques, P., & McCullough, M. L. (2010). Dietary lignans: physiology and potential for cardiovascular disease risk reduction. Nutrition Reviews, 68(10), 571-603. doi: 10.1111/j.1753- 4887.2010.00319.x DOI: https://doi.org/10.1111/j.1753-4887.2010.00319.x
Rahmani, Z., Khodaiyan, F., Kazemi, M., & Sharifan, A. (2020). Optimization of microwave-assisted extraction and structural characterization of pectin from sweet lemon peel. International Journal of Biological Macromolecules, 147, 1107-1115. doi: 10.1016/j.ijbiomac.2019.10.079 DOI: https://doi.org/10.1016/j.ijbiomac.2019.10.079
Ramful, D., Bahorun, T., Bourdon, E., Tarnus, E., & Aruoma, O. I. (2010). Bioactive phenolics and antioxidant propensity of flavedo extracts of Mauritian citrus fruits: Potential prophylactic ingredients for functional foods application. Toxicology, 278(1), 75-87. doi: 10.1016/j.tox.2010.01.012 DOI: https://doi.org/10.1016/j.tox.2010.01.012
Reynoso-Camacho, R., Rodríguez-Villanueva, L. D., Sotelo-González, A. M., Ramos-Gómez, M., & Pérez-Ramírez, I. F. (2021). Citrus decoction by-product represents a rich source of carotenoid, phytosterol, extractable and nonextractable polyphenols. Food Chemistry, 350, 129239. doi: 10.1016/j.foodchem.2021.129239 DOI: https://doi.org/10.1016/j.foodchem.2021.129239
Rosales, E., Pazos, M., & Ángeles Sanromán, M. (2018). Chapter 15 - Solid-State Fermentation for Food Applications. In A. Pandey, C. Larroche, & C. R. Soccol (Eds.), Current Developments in Biotechnology and Bioengineering (pp. 319-355). Elsevier. doi: 10.1016/B978-0-444-63990-5.00015-3 DOI: https://doi.org/10.1016/B978-0-444-63990-5.00015-3
Rossi, R. C., da Rosa, S. R., Weimer, P., Lisbôa Moura, J. G., de Oliveira, V. R., & de Castilhos, J. (2020). Assessment of compounds and cytotoxicity of Citrus deliciosa Tenore essential oils: From an underexploited by-product to a rich source of high-value bioactive compounds. Food Bioscience, 38, 100779. doi: 10.1016/j.fbio.2020.100779 DOI: https://doi.org/10.1016/j.fbio.2020.100779
Routray, W., & Orsat, V. (2019). 15 - Agricultural and Food Industry By-Products: Source of Bioactive Components for Functional Beverages. In A. M. Grumezescu & A. M. Holban (Eds.), Nutrients in Beverages (pp. 543-589). Academic Press. doi: 10.1016/B978-0-12-816842-4.00015-0 DOI: https://doi.org/10.1016/B978-0-12-816842-4.00015-0
Ruiz, H. A., Rodríguez-Jasso, R. M., Rodríguez, R., Contreras-Esquivel, J. C., & Aguilar, C. N. (2012). Pectinase production from lemon peel pomace as support and carbon source in solid-state fermentation column-tray bioreactor. Biochemical Engineering Journal, 65, 90-95. doi: 10.1016/j.bej.2012.03.007 DOI: https://doi.org/10.1016/j.bej.2012.03.007
Sadh, P. K., Kumar, S., Chawla, P., & Duhan, J. S. (2018). Fermentation: a boon for production of bioactive compounds by processing of food industries wastes (byproducts). Molecules, 23(10), 2560. DOI: https://doi.org/10.3390/molecules23102560
Safdar, M. N., Kausar, T., Jabbar, S., Mumtaz, A., Ahad, K., & Saddozai, A. A. (2017). Extraction and quantification of polyphenols from kinnow (Citrus reticulate L.) peel using ultrasound and maceration techniques. Journal of food and drug analysis, 25(3), 488-500. DOI: https://doi.org/10.1016/j.jfda.2016.07.010
Shan, Y. (2016). Chapter 3 - Extraction Processes of Functional Components From Citrus Peel. In Y. Shan (Ed.), Comprehensive Utilization of Citrus By-Products (pp. 31-58). Academic Press. doi: 10.1016/B978-0-12-809785-4.00003-4 DOI: https://doi.org/10.1016/B978-0-12-809785-4.00003-4
Smeriglio, A., Cornara, L., Denaro, M., Barreca, D., Burlando, B., Xiao, J., & Trombetta, D. (2019). Antioxidant and cytoprotective activities of an ancient Mediterranean citrus (Citrus lumia Risso) albedo extract: Microscopic observations and polyphenol characterization. Food Chemistry, 279, 347-355. doi: 10.1016/j.foodchem.2018.11.138 DOI: https://doi.org/10.1016/j.foodchem.2018.11.138
Soccol, C. R., Costa, E. S. F. d., Letti, L. A. J., Karp, S. G., Woiciechowski, A. L., & Vandenberghe, L. P. d. S. (2017). Recent developments and innovations in solid state fermentation. Biotechnology Research and Innovation, 1(1), 52-71. doi: 10.1016/j.biori.2017.01.002 DOI: https://doi.org/10.1016/j.biori.2017.01.002
Su, D.-L., Li, P.-J., Quek, S. Y., Huang, Z.-Q., Yuan, Y.-J., Li, G.-Y., & Shan, Y. (2019). Efficient extraction and characterization of pectin from orange peel by a combined surfactant and microwave assisted process. Food Chemistry, 286, 1-7. doi: 10.1016/j.foodchem.2019.01.200 DOI: https://doi.org/10.1016/j.foodchem.2019.01.200
Sun, Y., Liu, D., Chen, J., Ye, X., & Yu, D. (2011). Effects of different factors of ultrasound treatment on the extraction yield of the all-trans-β-carotene from citrus peels. Ultrasonics Sonochemistry, 18(1), 243-249. doi: 10.1016/j.ultsonch.2010.05.014 DOI: https://doi.org/10.1016/j.ultsonch.2010.05.014
Tian, X., Liu, Y., Feng, X., Khaskheli, A. A., Xiang, Y., & Huang, W. (2018). The effects of alcohol fermentation on the extraction of antioxidant compounds and flavonoids of pomelo peel. LWT, 89, 763-769. doi: 10.1016/j.lwt.2017.11.049 DOI: https://doi.org/10.1016/j.lwt.2017.11.049
Tsitsagi, M., Ebralidze, K., Chkhaidze, M., Rubashvili, I., & Tsitsishvili, V. (2018). Sequential extraction of bioactive compounds from tangerine (Citrus Unshiu) peel. Annals of Agrarian Science, 16(2), 236-241. doi: 10.1016/j.aasci.2018.02.007 DOI: https://doi.org/10.1016/j.aasci.2018.02.007
Wang, W., Ma, X., Xu, Y., Cao, Y., Jiang, Z., Ding, T., Ye, X., & Liu, D. (2015). Ultrasound-assisted heating extraction of pectin from grapefruit peel: Optimization and comparison with the conventional method. Food Chemistry, 178, 106-114. doi: 10.1016/j.foodchem.2015.01.080 DOI: https://doi.org/10.1016/j.foodchem.2015.01.080
Xiong, K., & Chen, Y. (2020). Supercritical carbon dioxide extraction of essential oil from tangerine peel: Experimental optimization and kinetics modelling. Chemical Engineering Research and Design, 164, 412-423. doi: 10.1016/j.cherd.2020.09.032 DOI: https://doi.org/10.1016/j.cherd.2020.09.032
Yaqoob, M., Aggarwal, P., Aslam, R., & Rehal, J. (2020). Chapter 15 - Extraction of bioactives from citrus. In Inamuddin, A. M. Asiri, & A. M. Isloor (Eds.), Green Sustainable Process for Chemical and Environmental Engineering and Science (pp. 357-377). Elsevier. doi: 10.1016/B978-0-12-817388-6.00015-5 DOI: https://doi.org/10.1016/B978-0-12-817388-6.00015-5