Controladores de modo deslizante para humedad del suelo modelada por ecuación Diferencial parcial no lineal y Análisis de ingravidez

Authors

  • José Luis Huayanay Villar Universidad del Estado de Río de Janeiro-UERJ, RJ, Brasil
  • José Paulo Vilela Soares da Cunha Universidad del Estado de Río de Janeiro-UERJ, RJ, Brasil

DOI:

https://doi.org/10.57063/ricay.v2i3.52

Keywords:

Control by sliding modes, Partial differential equation, Irrigation control, Nonlinear dynamics, weightless

Abstract

The present work is a continuation of the first versions of Sliding Mode Controllers for soil moisture modeled by nonlinear parabolic partial differential equation (2021) in which the effects of weightlessness were not considered. Sliding Mode Control (SMC) is applied to regulate the water content in the soil for precision irrigation. The dynamics of water infiltration in porous media (soil) is modeled by the Richards equation, which is a nonlinear parabolic partial differential equation (PDE) including weightlessness effects, with examples from Moon and Mars environments. Two control objectives are considered: control of average moisture and control of soil water content at a specific depth with examples from Lunar and Mars environments. SMC strategies are proposed, highlighting the use of a controller with proportional and integral actions connected in cascade for the case of sensor and actuator not placed. The simulation results indicate the excellent performance of these control systems and the rejection of external disturbances such as water evaporation, rain or weightless environments.

References

Assouline, S. (2013). Infiltration into soils: Conceptual approaches and solutions. Water Resources Research, 49(4), 1755–1772. DOI: https://doi.org/10.1002/wrcr.20155

Astrom, K.J. and H¨agglund, T. (1995). PID controllers: theory, design, and tuning, volume 2. Instrument society of America Research Triangle Park, NC.

Baluković, J., Slisko, J., & Cruz, A. C. (2018). A person stands on a balance in an elevator: What happens when the elevator starts to fall. The Physics Teacher, 56(3), 156-160. DOI: https://doi.org/10.1119/1.5025292

Basilio, J.C. and Matos, S.R. (2002). Design of PI and PID controllers with transient performance specification. IEEE Transactions on Education, 45(4), 364–370. DOI: https://doi.org/10.1109/TE.2002.804399

Coron, J.M. (2007). Control and nonlinearity. 136. American Mathematical Soc.

Edwards, C., Colet, E.F., Fridman, L., Colet, E.F., and Fridman, L.M. (2006). Advances in variable structure and sliding mode control, volume 334. Springer. DOI: https://doi.org/10.1007/11612735

Gardner, W. (1922). Israelsen, 0. w., edlefsen, ne, and clyde, hs,”the capillary potential function and its relation to irrigation practice”. Phys. Rev, 20(2), 196.

Hayek, M. (2016). An exact explicit solution for one-dimensional, transient, nonlinear richards’ equation for modeling infiltration with special hydraulic functions. Journal of Hydrology, 535, 662–670. DOI: https://doi.org/10.1016/j.jhydrol.2016.02.021

Hillel, D. (1998). Environmental soil physics: Fundamentals, applications, and environmental considerations. Academic Press, London.

Hu, Zhuojun, et al. "Research progress on lunar and Martian concrete." Construction and Building Materials 343 (2022): 128117. DOI: https://doi.org/10.1016/j.conbuildmat.2022.128117

Krstic, M. and Smyshlyaev, A. (2008). Boundary control of PDEs: A course on backstepping designs. SIAM. DOI: https://doi.org/10.1137/1.9780898718607

Medina, F. J. (2019). Los exploradores espaciales deben ser agricultores.

Molina, N.I.C. and Cunha, J.P.V. (2019). Non-collocated sliding mode control of partial differential equations for soil irrigation. Journal of Process Control, 73, 1–8. DOI: https://doi.org/10.1016/j.jprocont.2018.11.002

Monje, O., Stutte, G. W., Goins, G. D., Porterfield, D. M., & Bingham, G. E. (2003). Farming in space: environmental and biophysical concerns. Advances in Space Research, 31(1), 151-167. DOI: https://doi.org/10.1016/S0273-1177(02)00751-2

Mualem, Y. (1978). Hydraulic conductivity of unsaturated porous media: Generalized macroscopic approach. Water Resources Research, 14(2), 325–334. DOI: https://doi.org/10.1029/WR014i002p00325

Ribeiro, L. (2013). El agua en las civilizaciones inca e preincas mito, ciencia y tecnología. In 8. º Congresso Ibérico de Gestão e Planeamento da Agua, 530– 539.

Richards, L.A. (1931). Capillary conduction of liquids through porous mediums. Physics, 1(5), 318–333. DOI: https://doi.org/10.1063/1.1745010

Tarquino, P.F.R. (2018). Resolución de la ecuación de Richards unidimensional por el metodo de volúmenes finitos. B.S. thesis, Universidad Central del Ecuador.

Testa, G.H. (2019). Automatizacao de estufas para cultivo controlado utilizando redes mesh. B.S. thesis, Universidad Tecnológica Federal do Paraná.

Utkin, V.I. (1978). Sliding Modes and Their Application in Variable Structure Systems. MIR Publishers, Moscow.

Van Genuchten, M.T. (1980). A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of America Journal, 44(5), 892–898. DOI: https://doi.org/10.2136/sssaj1980.03615995004400050002x

Villar, J.L.H., Garcıa, J.O., and Hiyo, S.Y.M. (2020). Diseño y construcción de un sistema automatizado de control de bombas de agua en un cultivo hidropónico en el entorno arduino, unsch–Ayacucho. Revista ECIPer´u, 17(2), 67–73. DOI: https://doi.org/10.33017/RevECIPeru2020.0010/

Villar, Jose Luis Huayanay, and José Paulo VS Cunha. "Sliding-Mode Controllers for Soil Moisture Modeled by Nonlinear Parabolic Partial Differential Equations." 2022 16th International Workshop on Variable Structure Systems (VSS). IEEE, 2022. DOI: https://doi.org/10.1109/VSS57184.2022.9902067

Wadoo, S.A. (2012). Sliding mode control of crowd dynamics. IEEE Transactions on Control Systems Technology, 21(3), 1008–1015. DOI: https://doi.org/10.1109/TCST.2012.2196700

Published

2024-06-13

How to Cite

Huayanay Villar, J. L., & Vilela Soares da Cunha, J. P. (2024). Controladores de modo deslizante para humedad del suelo modelada por ecuación Diferencial parcial no lineal y Análisis de ingravidez. Revista De Investigación Científica De La UNF – Aypate, 2(3), 25–41. https://doi.org/10.57063/ricay.v2i3.52

Issue

Section

Artículo Original

Most read articles by the same author(s)