Rethinking infrastructure networks as a mechanism to address urban metabolic crises, social inequality and poverty

Authors

  • Luis Enrique Ortega Salinas Laboratorio de arquitectura I +D, Loja, Ecuador

DOI:

https://doi.org/10.57063/ricay.v1i1.8

Keywords:

Infrastructure, urban metabolism, essential services, resources

Abstract

Today, when conventional technologies for the provision of essential services, based on monopolistic and centralized solutions, show their association with processes of environmental degradation, depredation of natural resources, poverty and social exclusion, a window of opportunity appears to rethink the frameworks through which the technologies that support cities should be analyzed, inviting us to review the imaginary of the "technological ideal of modern infrastructure" and re-evaluate alternative socio-technical configurations for the provision of these services. Globally, the scale of social and environmental problems exceeds current government response capacities. The structural scope seems to show the ineffectiveness of Tecnologías conventional technological mechanisms to solve these problems.

To deal with this scenario, adaptation mechanisms to new urban problems are a priority, just as living organisms adapt and evolve to better adjust to the environment, it is necessary to seek technological and social adaptation mechanisms that allow efficient and equitably available resources. Housing constitutes the main built component of cities, therefore an intervention mechanism of rapid execution and great impact is to make technological modifications in housing that determine substantial changes in its configuration and operation, in order to achieve the harmonious integration of ties. with the natural environment and at the same time a decent, safe and above all equitable human habitat is guaranteed.

References

Abramo, L. W. (Ed.). (2016). The social inequality matrix in Latin America. United Nations ECLAC. Akubue, A. (2000). Appropriate technology for socioeconomic development in third world countries. Amin, A. (2014). Lively infrastructure. Theory, Culture & Society, 31(7-8), 137-161. DOI: https://doi.org/10.1177/0263276414548490

Arora, S., & Saraswat, S. (2021). Vermifiltration as a natural, sustainable and green technology for environmental remediation: A new paradigm for wastewater treatment process. DOI: https://doi.org/10.1016/j.crgsc.2021.100061

Current Research in Green and Sustainable Chemistry, 4, 100061.

Broto, V. C. (2022). Splintering Urbanism and Climate Breakdown. Journal of Urban Technology, 29(1), 87-93. Boehm, A. B., Bell, C. D., Fitzgerald, N. J., Gallo, E., Higgins, C. P., Hogue, T. S., ... & Wolfand, J. M. (2020). Biochar- DOI: https://doi.org/10.1080/10630732.2021.2001717

augmented biofilters to improve pollutant removal from stormwater–can they improve receiving water quality?. Environmental Science: Water Research & Technology, 6(6), 1520-1537. DOI: https://doi.org/10.1039/D0EW00027B

Busso, M., & Messina, J. (2020). La crisis de la desigualdad: América Latina y el Caribe en la encrucijada. Washington, DC: Banco Interamericano de Desarrollo. https://publications. iadb. org/publications/spanish/ document/La-crisis-de-la-desigualdad-America-Latina-y-el-Caribe-en-la-encrucijada. pdf.

Brunori, G., Branca, G., Cembalo, L., D’Haese, M., & Dries, L. (2020). Agricultural and Food Economics: the challenge of sustainability. Agricultural and Food Economics. DOI: https://doi.org/10.1186/s40100-020-00156-2

Caprotti, F., de Groot, J., Bobbins, K., Mathebula, N., Butler, C., Moorlach, M., ... & Finlay, K. (2022).

Rethinking the offgrid city. Urban Geography, 1-14.

Coutard, O., & Florentin, D. (2022). Resource Ecologies, Urban Metabolisms, and the Provision of Essential Services. DOI: https://doi.org/10.1080/10630732.2021.2001718

Journal of Urban Technology, 29(1), 49-58.

Coutard, O., & Rutherford, J. (Eds.). (2015). Beyond the networked city: DOI: https://doi.org/10.4324/9781315757612

Infrastructure reconfigurations and urban change in the North and South. Routledge.

Davis, M. (2007). Planeta de ciudades miseria, tr. JM Amoroto, Madrid, Foca Ediciones. Elser, J., & Bennett, E. (2011). A broken biogeochemical cycle. Nature, 478(7367). DOI: https://doi.org/10.1038/478029a

Fazey, I., Schäpke, N., Caniglia, G., Patterson, J., Hultman, J., Van Mierlo, B., ... & Wyborn, C. (2018).

Ten essentialsfor action-oriented and second order energy transitions, transformations and climate change research. Energy Research & Social Science, 40, 54-70. DOI: https://doi.org/10.1016/j.erss.2017.11.026

Heino, O., & Takala, A. (2020). Transformation of Urban Water Service Provision:

Potential of Hybrid Systems. Public Works Management & Policy, 25(2), 151-166.

Lemanski, C., & Massey, R. (2022). Is the grid people or product?

Relational infrastructure networks in Cape Town'senergy-housing nexus. Urban Geography, 1-25.

Lemanski, C. (2021). Broadening the landscape of post-network cities:

a call to research the off-grid infrastructuretransitions of the non-poor. Landscape Research, 1-13.

Luthy, R. G., Sharvelle, S., & Dillon, P. (2019). Urban stormwater to enhance water supply. Medeiros, D. L., Kiperstok, A. C., Nascimento, F. R. A., Cohim, E. H., & Kiperstok, A. (2021). DOI: https://doi.org/10.1021/acs.est.8b05913

Human urine management in resource-based sanitation: water-energy-nutrient nexus, energy demand and economic performance. Sustainable Production and Consumption, 26, 988-998. DOI: https://doi.org/10.1016/j.spc.2020.12.043

Moretto, L., Faldi, G., Ranzato, M., Rosati, F. N., Ilito Boozi, J. P., & Teller, J. (2018). Challenges of water and sanitation service co-production in the global South. Environment and Urbanization, 30(2), 425-443. DOI: https://doi.org/10.1177/0956247818790652

Musazura, W., & Odindo, A. O. (2022). Characterisation of selected human excreta-derived fertilisers for agriculturaluse: A scoping review. Journal of Cleaner Production, 130516. DOI: https://doi.org/10.1016/j.jclepro.2022.130516

Rovira, C., Sánchez, M., & Rovira, M. D. (2020). Is Rain Water Harvesting a Solution for Water Access in Latin America and the Caribbean? An Economic Analysis for Underserved Households in El Salvador. Nota Quality Management.” International Journal of Remote Sensing, 34(21), 7534-7544. DOI: https://doi.org/10.18235/0002689

Simonis, J. J., & Basson, A. K. (2013). Manufacture of a low-cost ceramic microporousfilter for the elimination of microorganisms causing common diseases. Journal of water, sanitation and hygiene for development, 3(1), 42-50. DOI: https://doi.org/10.2166/washdev.2013.110

Schandl, H., Fischer‐Kowalski, M., West, J., Giljum, S., Dittrich, M.,Eisenmenger, N., ... & Fishman, T. (2018).

Global material flows and resource productivity: forty years of evidence. Journal of Industrial Ecology, 22(4), 827-838. DOI: https://doi.org/10.1111/jiec.12626

Steffen, W., Richardson, K., Rockström, J., Cornell, S. E., Fetzer, I., Bennett, E. M., ... & Sörlin, S. (2015).

Planetary boundaries: Guiding human development on a changing planet. science, 347(6223), 1259855.

Tobergte, D. R., & Curtis, S. (2016). Global Monitoring Report 2015/206. Development Goals in an Era of Demographic Change. In Journal of Chemical Information and Modeling (Vol. 53, Issue 9).

ONU (2018). World Urbanization Prospects: The 2018 Revision. Online Edition.

Watkins, T., Arroyo, P., Perry, R., Wang, R., Arriaga, O., Fleming, M., ... & Schwartz, P. (2017).

Insulated solar electric cooking–tomorrow's healthy affordable stoves?. Development engineering, 2, 47-52 DOI: https://doi.org/10.1016/j.deveng.2017.01.001

Published

2022-11-20

How to Cite

Ortega Salinas, L. E. (2022). Rethinking infrastructure networks as a mechanism to address urban metabolic crises, social inequality and poverty. Revista De Investigación Científica De La UNF – Aypate, 1(1), 18–27. https://doi.org/10.57063/ricay.v1i1.8

Issue

Section

Artículo Original