Sensores inteligentes empleados en el mantenimiento predictivo de equipos y máquinas: una revisión sistemática de la literatura

Authors

  • Vicente Amirpasha Tirado Kulieva Universidad Nacional de Frontera, Sullana, Piura, Perú.
  • Eliam Gabriel Gonzales Arévalo Universidad Nacional de Frontera, Sullana, Piura, Perú.
  • Brayan Estiven Flores Castillo Universidad Nacional de Frontera, Sullana, Piura, Perú.
  • Luis Alberto Juárez Calderón
  • Ethell Tatiana Rivera Gutiérrez
  • Roberto Simón Seminario Sanz Universidad Nacional de Frontera, Sullana, Piura, Perú.
  • Wilson Castro Silupú Universidad Nacional de Frontera, Sullana, Piura, Perú.

DOI:

https://doi.org/10.57063/ricay.v2i1.31

Keywords:

Industry 4.0, digital era, predictive maintenance, smart sensors, automation

Abstract

The implementation of smart sensors in the industry is crucial to monitor the machine, detect possible failures and prevent them. In this sense, the objective of this study is to perform a systematic review focused on the use of smart sensors in the predictive maintenance of machines and equipment. Using the PRISMA methodology, a search for research from 2000 to 2021 was carried out in the Scopus and Science Direct databases. After analyzing the selected studies, the main results showed a positive trend on the publication of studies on the topic, which are gradually taking place in Asia and Europe. Therefore, it is essential to inform about the importance of the use of smart sensors, mainly in countries with technological deficit to increase the competitiveness of industries.

References

Bal, H. Ç., & Erkan, Ç. (2019). Industry 4.0 and Competitiveness. Procedia Computer Science, 158, 625-631. DOI: https://doi.org/10.1016/j.procs.2019.09.096

Bravo M, D. A., Alvarez Q, L. I., & Lozano M, C. A. (2021). Dataset of distribution transformers for predictive maintenance. Data in Brief, 38, 107454. DOI: https://doi.org/10.1016/j.dib.2021.107454

Carvalho, A. P. A., & Junior, C. A. C. (2020). Green strategies for active food packagings: A systematic review on active properties of graphene-based nanomaterials and biodegradable polymers. Trends in Food Science & Technology, 103, 130-43. DOI: https://doi.org/10.1016/j.tifs.2020.07.012

Cimoli, M., Pereima, J. B., & Porcile, G. (2019). A technology gap interpretation of growth paths in Asia and Latin America. Research Policy, 48(1), 125-136. DOI: https://doi.org/10.1016/j.respol.2018.08.002

De Jonge, B., & Scarf, P. A. (2020). A review on maintenance optimization. European Journal of Operational Research, 285(3), 805–824. DOI: https://doi.org/10.1016/j.ejor.2019.09.047

Drakaki, M., Karnavas, Y. L., Tzionas, P., & Chasiotis, I. D. (2021). Recent Developments Towards Industry 4.0 Oriented Predictive Maintenance in Induction Motors. Procedia computer Science, 180, 943-949. DOI: https://doi.org/10.1016/j.procs.2021.01.345

Herrera-Sánchez, G., Morán-Bravo, L., Gallardo-Navarro, J.L. & Silva-Juárez, A. (2020). Gestión del mantenimiento y la industria 4.0. Revista de Ingeniería Innovativa, 4(15), 18-28. DOI: https://doi.org/10.35429/JOIE.2020.15.4.18.28

Hommel, M., Knab, H., & Yousef, S. G. (2021). Reliability of automotive and consumer MEMS sensors - An overview. Microelectronics Reliability, 114252. DOI: https://doi.org/10.1016/j.microrel.2021.114252

Javaid, M., Haleem, A., Singh, R. P., Rab, S., & Suman, R. (2021). Significance of sensors for Industry 4.0: Roles, capabilities, and applications. Sensors International, 2, 100110. DOI: https://doi.org/10.1016/j.sintl.2021.100110

Kalsoom, T., Ramzan, N., Ahmed, S., & Ur-Rehman, M. (2020). Advances in Sensor Technologies in the Era of Smart Factory and Industry 4.0. Sensors, 20(23), 6783. DOI: https://doi.org/10.3390/s20236783

Lillstrang, M., Harju, M., del Campo, G., Calderon, G., Röning, J., & Tamminen, S. (2021). Implications of properties and quality of indoor sensor data for building machine learning applications: Two case studies in smart campuses. Building and Environment. (Prevision screen – November/2021). DOI: https://doi.org/10.1016/j.buildenv.2021.108529

Nagano, A. (2018). Economic Growth and Automation Risks in Developing Countries Due to the Transition Toward Digital Modernity. ICEGOV’18: In Proceedings of the 11th International Conference on Theory and Practice of Electronic Governance, Ireland (pp. 42-49). Association for Computing Machinery. DOI: https://doi.org/10.1145/3209415.3209442

Ponce-Corona, E., Sánchez, M. G., Fajardo-Delgado, D., Acevedo-Juárez, B., De-la-Torre, M., Avila-George, H., & Castro, W. (2020). Una revisión sistemática de la literatura enfocada al uso de vehículos aéreos no tripulados durante el proceso de detección de vegetación. Revista lbérica de Sistemas e Tecnologias de Informação, 36, 8-101. DOI: https://doi.org/10.17013/risti.36.82-101

Sibrian, K. A., & Amaya, K. V. (2019). Desafíos de la Industria 4.0 y Oportunidades de Desarrollo sostenible para América Latina y el Caribe. XII Congreso de Economistas de América Latina y el Caribe. http://dx.doi.org/10.13140/RG.2.2.26772.86404

Steurtewagen, B., & Poel, D. V. D. (2021). Adding interpretability to predictive maintenance by machine learning on sensor data. Computers & Chemical Engineering, 152, 107381. DOI: https://doi.org/10.1016/j.compchemeng.2021.107381

Trigona, C., Graziani, S., & Baglio, S. (2020). Changes in sensors technologies during the last ten years: Evolution or revolution? IEEE Instrumentation & Measurement Magazine, 23(6), 18-22. DOI: https://doi.org/10.1109/MIM.2020.9200876

Trotin, N., Sánchez de Prado, J., Ladret, P., & Vilchez Motino, P. (2017). Mantenimiento y rehabilitación de sistemas de atirantamiento: tecnologías, patologías tipo, inspección, monitorización y reparaciones. Hormigón y Acero. DOI: https://doi.org/10.1016/j.hya.2017.05.014

UTEC – Universidad de Ingeniería y Tecnología. (2018). ¿Qué significa se parte de la IEEE en UTEC? https://www.utec.edu.pe/blog-de-carreras/ingenieria-de-la-energia/que-significa-ser-parte-de-la-ieee-en-utec

Xu, M., Wang, S., Zhang, S. L., Ding, W., Kien, P. T., Wang, C., Li, Z., Pan, X., & Wang, Z. L. (2019). A highly sensitive wave sensor based on liquid-solid interfacing triboelectric nanogenerator for smart marine equipment. Nano Energy, 57, 574-580. DOI: https://doi.org/10.1016/j.nanoen.2018.12.041

Zhao, W., Ma, J., Wang, K. I-K. & Wang, J. (2017). Report of the 2017 IEEE Cyber Science and Technology Congress. MPDI. https://www.mdpi.com/2076-3417/7/12/1299/pdf DOI: https://doi.org/10.3390/app7121299

Zonta, T., da Costa, C. A., da Rosa Righi, R., de Lima, M. J., da Trindade, E. S., & Li, G. P. (2020). Predictive maintenance in the Industry 4.0: A systematic literature review. Computers & Industrial Engineering, 150, 106889. DOI: https://doi.org/10.1016/j.cie.2020.106889

Published

2024-06-10

How to Cite

Tirado Kulieva, V. A., Gonzales Arévalo, E. G., Flores Castillo, B. E., Juárez Calderón, L. A., Rivera Gutiérrez, E. T., Seminario Sanz, R. S., & Castro Silupú, W. (2024). Sensores inteligentes empleados en el mantenimiento predictivo de equipos y máquinas: una revisión sistemática de la literatura. Revista De Investigación Científica De La UNF – Aypate, 2(1), 96–105. https://doi.org/10.57063/ricay.v2i1.31

Issue

Section

Artículo Original