Escenarios de idoneidad agrícola para cultivos peruanos Musa paradisiaca L. y Coffea arabica L. con modelamiento EcoCrop-FAO-SIG, 2021-2040 y 2041-2060
DOI:
https://doi.org/10.57063/ricay.v3i1.78Keywords:
Productivity, yield, agroclimatic, productive prospective, spatio-temporal analysisAbstract
The analysis of agricultural-environmental suitability contributes to appropriate land-use planning, land distribution and sustainable agriculture. Using future scenarios of agricultural suitability 2021-2040 and 2041-2060 for Peruvian crops Musa paradisiaca L. and Coffea arabica L., it was evaluated whether the agro-climatic conditions between 1970-2000, marginal and optimal ranges of temperature, precipitation, growing period from days to germination Gmin and Gmax, are adequate in a spatio-temporal dynamic. The EcoCrop-FAO model and GIS information extracted from WorldClim and processed with QGIS, generated spatial distribution maps from agro-climatic-environmental data; obtaining three output indices, crop suitability with respect to temperature (Tsuit), crop suitability with respect to precipitation (Rsuit) and the Suitability Index for Future Crop Suitability (SUIT). The Coffea arabica L. (coffee) crop in Amazonas, San Martín and Junín would retain its agricultural suitability in 2040 with a degree of optimal suitability greater than 83%; while Piura, with a SUIT of less than 17%, would no longer have optimal climatic conditions for the development of this crop. The suitability of Musa paradisiaca L. (banana) in Amazonas, Loreto, Cerro de Pasco, San Martin, Pucallpa and Madre de Dios, would present favourable conditions for its development, with Loreto having the greatest presence of areas with positive changes with respect to climatic suitability for the period 2041-2060, with a variable trend up to 60%. In Ucayali, Cuzco, Junín, Madre de Dios and Puno, the opposite is the case, regions with the greatest presence of areas that would suffer negative changes with respect to climate suitability for the period 2041-2060, with changes of up to -72%. Finally, climate suitability will move in areas no lower than 121 m and no higher than 1980 m above sea level (ms.n.m).
References
Aria, M., & Cuccurullo, C. (2017). bibliometrix: An R-tool for comprehensive science mapping analysis. Journal of Informetrics, 11(4), 959-975. https://doi.org/10.1016/j.joi.2017.08.007 DOI: https://doi.org/10.1016/j.joi.2017.08.007
Coelli, T. J., Rao, D. S. P., O’Donnell, C. J., & Battese, G. E. (2005). An introduction to efficiency and productivity analysis (Vol. 1, pp. 1-349). Springer. https://doi.org/10.1007/b136381 DOI: https://doi.org/10.1007/b136381
Dağtekin, M., Uysal, O., Candemir, S., & Genç, Y. (2021). Productive efficiency of the pelagic trawl fisheries in the Southern Black Sea. Regional Studies in Marine Science, 45, 101853. https://doi.org/10.1016/j.rsma.2021.101853 DOI: https://doi.org/10.1016/j.rsma.2021.101853
Daraio, C., Kerstens, K., Nepomuceno, T., & Sickles, R. C. (2020). Empirical surveys of frontier applications: A meta‐review. International Transactions in Operational Research, 27(2), 709-738. https://doi.org/10.1111/itor.12649 DOI: https://doi.org/10.1111/itor.12649
Donthu, N., Kumar, S., Mukherjee, D., Pandey, N., & Lim, W. M. (2021). How to conduct a bibliometric analysis: An overview and guidelines. Journal of Business Research, 133, 285-296. https://doi.org/10.1016/j.jbusres.2021.04.070 DOI: https://doi.org/10.1016/j.jbusres.2021.04.070
Gao, J., Zhu, S., Li, D., Jiang, H., Deng, G., Wen, Y., He, C., & Cao, Y. (2023). Bibliometric analysis of climate change and water quality. Hydrobiologia, 850(16), 3441-3459. https://doi.org/10.1007/s10750-023-05270-y DOI: https://doi.org/10.1007/s10750-023-05270-y
Kent Baker, H., Pandey, N., Kumar, S., & Haldar, A. (2020). A bibliometric analysis of board diversity: Current status, development, and future research directions. Journal of Business Research, 108, 232-246. https://doi.org/10.1016/j.jbusres.2019.11.025 DOI: https://doi.org/10.1016/j.jbusres.2019.11.025
Li, J., Goerlandt, F., & Reniers, G. (2020). Mapping process safety: A retrospective scientometric analysis of three process safety related journals (1999–2018). Journal of Loss Prevention in the Process Industries, 65, 104141. https://doi.org/10.1016/j.jlp.2020.104141 DOI: https://doi.org/10.1016/j.jlp.2020.104141
Magadán-Díaz, M., & Rivas-García, J. I. (2022). Publishing Industry: A Bibliometric Analysis of the Scientific Production Indexed in Scopus. Publishing Research Quarterly, 38(4), 665-683. https://doi.org/10.1007/s12109-022-09911-3 DOI: https://doi.org/10.1007/s12109-022-09911-3
Nobanee, H., Al Hamadi, F. Y., Abdulaziz, F. A., Abukarsh, L. S., Alqahtani, A. F., AlSubaey, S. K., Alqahtani, S. M., & Almansoori, H. A. (2021). A Bibliometric Analysis of Sustainability and Risk Management. Sustainability, 13(6), 3277. https://doi.org/10.3390/su13063277 DOI: https://doi.org/10.3390/su13063277
Pascoe, S. (2001). Physical versus harvest-based measures of capacity: The case of the United Kingdom vessel capacity unit system. ICES Journal of Marine Science, 58(6), 1243-1252. https://doi.org/10.1006/jmsc.2001.1093 DOI: https://doi.org/10.1006/jmsc.2001.1093
Predragovic, M., Cvitanovic, Christopher, Karcher, Denis B., Tietbohl,Matthew D., Sumaila, U. Rashid, & Costa,Bárbara Horta e. (2023). A systematic literature review of climate change research on Europe’s threatened commercial fish species. Ocean and Coastal Management. https://doi.org/10.1016/j.ocecoaman.2023.106719 DOI: https://doi.org/10.1016/j.ocecoaman.2023.106719
Sekhar, R., Shah, P., & Iswanto, I. (2022). Robotics in Industry 4.0: A Bibliometric Analysis (2011-2022). Journal of Robotics and Control (JRC), 3(5), Article 5. https://doi.org/10.18196/jrc.v3i5.15453 DOI: https://doi.org/10.18196/jrc.v3i5.15453
Sharma, K. R., & Leung, P. (1998). Technical Efficiency of the Longline Fishery in Hawaii: An Application of a Stochastic Production Frontier. Marine Resource Economics, 13(4), 259-274. DOI: https://doi.org/10.1086/mre.13.4.42629241
Squires, D., & Kirkley, J. (1999). Skipper skill and panel data in fishing industries. Canadian Journal of Fisheries and Aquatic Sciences, 56(11), 2011-2018. https://doi.org/10.1139/f99-135 DOI: https://doi.org/10.1139/f99-135
Thelwall, M. (2008). Bibliometrics to webometrics. Journal of Information Science, 34(4), 605-621. https://doi.org/10.1177/0165551507087238 DOI: https://doi.org/10.1177/0165551507087238
van Eck, N. J., & Waltman, L. (2010). Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics, 84(2), 523-538. https://doi.org/10.1007/s11192-009-0146-3 DOI: https://doi.org/10.1007/s11192-009-0146-3
Weir, P., & Dahlhaus, P. (2023). In search of pragmatic soil moisture mapping at the field scale: A review. Smart Agricultural Technology, 6, 100330. https://doi.org/10.1016/j.atech.2023.100330 DOI: https://doi.org/10.1016/j.atech.2023.100330
Zayat, W., Kilic, H. S., Yalcin, A. S., Zaim, S., & Delen, D. (2023). Application of MADM methods in Industry 4.0: A literature review. Computers & Industrial Engineering, 177, 109075. https://doi.org/10.1016/j.cie.2023.109075 DOI: https://doi.org/10.1016/j.cie.2023.109075