Eficiencia productiva en la industria pesquera: un análisis bibliométrico (1979-2023).

Authors

  • Cristhian Nicolás Aldana Yarleque Universidad Nacional de Frontera, Sullana, Piura, Perú.
  • Carlos Adrián Lecarnaqué Arevalo Universidad Nacional de Frontera, Sullana, Piura, Perú.
  • Wilmer Moncada Sosa Universidad Nacional San Cristobal de Huamanga, Ayacucho, Perú
  • Gustavo Adolfo Mendoza Rodríguez Universidad Nacional de Frontera, Sullana, Piura, Perú.
  • Luis Ramón Trelles Pozo Universidad Nacional de Frontera, Sullana, Piura, Perú.

DOI:

https://doi.org/10.57063/ricay.v3i1.84

Keywords:

Productive efficiency, industry, fishing, bibliometrics

Abstract

The literature on productive efficiency in the fishing industry is extensive and diverse. This study applies a bibliometric analysis to review 626 scientific articles based on the Scopus database from 1979 to 2023. The results show that, from 1979 to 2023, there was a significant increase in the number of publications. In the first years of the research (1979-1990), the preponderance of publications was concentrated in specific geographic areas such as the United States, Canada, the United Kingdom, Australia y Belgium (5 countries). Subsequently (1990-2023), and thanks to international collaboration that, to a certain extent, led to this change, the scope of Productive Efficiency in the fishing industry experienced a gradual expansion towards larger geographic regions, expanding from Asia to the from South America (76 countries). The results indicate that Aquaculture Economics And Management, Fisheries Research, Aquaculture, Marine Resource Economics and Marine Policy were the top 5 journals for publication during 1979-2023 for this field. Data Envelopment Analysis (DEA) and Stochastic Frontier Analysis (SFA) have been the most used approaches in the research field in recent decades. In recent years, fishery-related studies in technical efficiency, economic efficiency, fishery management, optimization, fisheries economics, efficiency and sustainability have become increasingly interesting to researchers. The findings of this study offer a deeper understanding of publication trends, identify hotspots, and point to future research directions in this evolving field.

References

Aria, M., & Cuccurullo, C. (2017). bibliometrix: An R-tool for comprehensive science mapping analysis. Journal of Informetrics, 11(4), 959-975. https://doi.org/10.1016/j.joi.2017.08.007 DOI: https://doi.org/10.1016/j.joi.2017.08.007

Coelli, T. J., Rao, D. S. P., O’Donnell, C. J., & Battese, G. E. (2005). An introduction to efficiency and productivity analysis (Vol. 1, pp. 1-349). Springer. https://doi.org/10.1007/b136381 DOI: https://doi.org/10.1007/b136381

Dağtekin, M., Uysal, O., Candemir, S., & Genç, Y. (2021). Productive efficiency of the pelagic trawl fisheries in the Southern Black Sea. Regional Studies in Marine Science, 45, 101853. https://doi.org/10.1016/j.rsma.2021.101853 DOI: https://doi.org/10.1016/j.rsma.2021.101853

Daraio, C., Kerstens, K., Nepomuceno, T., & Sickles, R. C. (2020). Empirical surveys of frontier applications: A meta‐review. International Transactions in Operational Research, 27(2), 709-738. https://doi.org/10.1111/itor.12649 DOI: https://doi.org/10.1111/itor.12649

Donthu, N., Kumar, S., Mukherjee, D., Pandey, N., & Lim, W. M. (2021). How to conduct a bibliometric analysis: An overview and guidelines. Journal of Business Research, 133, 285-296. https://doi.org/10.1016/j.jbusres.2021.04.070 DOI: https://doi.org/10.1016/j.jbusres.2021.04.070

Gao, J., Zhu, S., Li, D., Jiang, H., Deng, G., Wen, Y., He, C., & Cao, Y. (2023). Bibliometric analysis of climate change and water quality. Hydrobiologia, 850(16), 3441-3459. https://doi.org/10.1007/s10750-023-05270-y DOI: https://doi.org/10.1007/s10750-023-05270-y

Kent Baker, H., Pandey, N., Kumar, S., & Haldar, A. (2020). A bibliometric analysis of board diversity: Current status, development, and future research directions. Journal of Business Research, 108, 232-246. https://doi.org/10.1016/j.jbusres.2019.11.025 DOI: https://doi.org/10.1016/j.jbusres.2019.11.025

Li, J., Goerlandt, F., & Reniers, G. (2020). Mapping process safety: A retrospective scientometric analysis of three process safety related journals (1999–2018). Journal of Loss Prevention in the Process Industries, 65, 104141. https://doi.org/10.1016/j.jlp.2020.104141 DOI: https://doi.org/10.1016/j.jlp.2020.104141

Magadán-Díaz, M., & Rivas-García, J. I. (2022). Publishing Industry: A Bibliometric Analysis of the Scientific Production Indexed in Scopus. Publishing Research Quarterly, 38(4), 665-683. https://doi.org/10.1007/s12109-022-09911-3 DOI: https://doi.org/10.1007/s12109-022-09911-3

Nobanee, H., Al Hamadi, F. Y., Abdulaziz, F. A., Abukarsh, L. S., Alqahtani, A. F., AlSubaey, S. K., Alqahtani, S. M., & Almansoori, H. A. (2021). A Bibliometric Analysis of Sustainability and Risk Management. Sustainability, 13(6), 3277. https://doi.org/10.3390/su13063277 DOI: https://doi.org/10.3390/su13063277

Pascoe, S. (2001). Physical versus harvest-based measures of capacity: The case of the United Kingdom vessel capacity unit system. ICES Journal of Marine Science, 58(6), 1243-1252. https://doi.org/10.1006/jmsc.2001.1093 DOI: https://doi.org/10.1006/jmsc.2001.1093

Predragovic, M., Cvitanovic, Christopher, Karcher, Denis B., Tietbohl,Matthew D., Sumaila, U. Rashid, & Costa,Bárbara Horta e. (2023). A systematic literature review of climate change research on Europe’s threatened commercial fish species. Ocean and Coastal Management. https://doi.org/10.1016/j.ocecoaman.2023.106719 DOI: https://doi.org/10.1016/j.ocecoaman.2023.106719

Sekhar, R., Shah, P., & Iswanto, I. (2022). Robotics in Industry 4.0: A Bibliometric Analysis (2011-2022). Journal of Robotics and Control (JRC), 3(5), Article 5. https://doi.org/10.18196/jrc.v3i5.15453 DOI: https://doi.org/10.18196/jrc.v3i5.15453

Sharma, K. R., & Leung, P. (1998). Technical Efficiency of the Longline Fishery in Hawaii: An Application of a Stochastic Production Frontier. Marine Resource Economics, 13(4), 259-274. DOI: https://doi.org/10.1086/mre.13.4.42629241

Squires, D., & Kirkley, J. (1999). Skipper skill and panel data in fishing industries. Canadian Journal of Fisheries and Aquatic Sciences, 56(11), 2011-2018. https://doi.org/10.1139/f99-135 DOI: https://doi.org/10.1139/f99-135

Thelwall, M. (2008). Bibliometrics to webometrics. Journal of Information Science, 34(4), 605-621. https://doi.org/10.1177/0165551507087238 DOI: https://doi.org/10.1177/0165551507087238

van Eck, N. J., & Waltman, L. (2010). Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics, 84(2), 523-538. https://doi.org/10.1007/s11192-009-0146-3 DOI: https://doi.org/10.1007/s11192-009-0146-3

Weir, P., & Dahlhaus, P. (2023). In search of pragmatic soil moisture mapping at the field scale: A review. Smart Agricultural Technology, 6, 100330. https://doi.org/10.1016/j.atech.2023.100330 DOI: https://doi.org/10.1016/j.atech.2023.100330

Zayat, W., Kilic, H. S., Yalcin, A. S., Zaim, S., & Delen, D. (2023). Application of MADM methods in Industry 4.0: A literature review. Computers & Industrial Engineering, 177, 109075. https://doi.org/10.1016/j.cie.2023.109075 DOI: https://doi.org/10.1016/j.cie.2023.109075

Published

2024-06-20

How to Cite

Aldana Yarleque, C. N., Lecarnaqué Arevalo, C. A., Moncada Sosa, W., Mendoza Rodríguez, G. A., & Trelles Pozo, L. R. (2024). Eficiencia productiva en la industria pesquera: un análisis bibliométrico (1979-2023). Revista De Investigación Científica De La UNF – Aypate, 3(1), 112–127. https://doi.org/10.57063/ricay.v3i1.84

Issue

Section

Artículo Original

Most read articles by the same author(s)

1 2 > >>